我们的Velodyne传感器具有完整的功能,但与ROS等机器人中间件没有任何联系。将Gazebo与ROS结合使用的好处之一是,可以轻松地在真实世界和模拟世界之间进行切换。为了做到这一点,我们需要让我们的传感器与ROS生态系统完美配合。
我们将以与在上一教程中添加Gazebo传输机制的方式类似的方式,修改当前的插件以包括ROS传输机制。
我们假设您的系统上当前已安装ROS。
将头文件添加到该文件。velodyne_plugin.cc
#include <thread>
#include "ros/ros.h"
#include "ros/callback_queue.h"
#include "ros/subscribe_options.h"
#include "std_msgs/Float32.h"
向插件添加一些成员变量。
/// \brief A node use for ROS transport
private: std::unique_ptr<ros::NodeHandle> rosNode;
/// \brief A ROS subscriber
private: ros::Subscriber rosSub;
/// \brief A ROS callbackqueue that helps process messages
private: ros::CallbackQueue rosQueue;
/// \brief A thread the keeps running the rosQueue
private: std::thread rosQueueThread;
在Load
函数末尾,添加以下内容。
// Initialize ros, if it has not already bee initialized.
if (!ros::isInitialized())
{
int argc = 0;
char **argv = NULL;
ros::init(argc, argv, "gazebo_client",
ros::init_options::NoSigintHandler);
}
// Create our ROS node. This acts in a similar manner to
// the Gazebo node
this->rosNode.reset(new ros::NodeHandle("gazebo_client"));
// Create a named topic, and subscribe to it.
ros::SubscribeOptions so =
ros::SubscribeOptions::create<std_msgs::Float32>(
"/" + this->model->GetName() + "/vel_cmd",
1,
boost::bind(&VelodynePlugin::OnRosMsg, this, _1),
ros::VoidPtr(), &this->rosQueue);
this->rosSub = this->rosNode->subscribe(so);
// Spin up the queue helper thread.
this->rosQueueThread =
std::thread(std::bind(&VelodynePlugin::QueueThread, this));
如果您仔细阅读了代码,您会发现我们需要两个新功能:OnRosMsg
和QueueThread
。让我们现在添加它们。
/// \brief Handle an incoming message from ROS
/// \param[in] _msg A float value that is used to set the velocity
/// of the Velodyne.
public: void OnRosMsg(const std_msgs::Float32ConstPtr &_msg)
{
this->SetVelocity(_msg->data);
}
/// \brief ROS helper function that processes messages
private: void QueueThread()
{
static const double timeout = 0.01;
while (this->rosNode->ok())
{
this->rosQueue.callAvailable(ros::WallDuration(timeout));
}
}
最后需要照顾的是cmake构建。
CMakeLists.txt
修改文件的顶部,如下所示。
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
find_package(roscpp REQUIRED)
find_package(std_msgs REQUIRED)
include_directories(${roscpp_INCLUDE_DIRS})
include_directories(${std_msgs_INCLUDE_DIRS})
修改插件的目标链接库。
target_link_libraries(velodyne_plugin ${GAZEBO_LIBRARIES} ${roscpp_LIBRARIES})
您现在应该看起来像这样。CMakeLists.txt
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
find_package(roscpp REQUIRED)
find_package(std_msgs REQUIRED)
include_directories(${roscpp_INCLUDE_DIRS})
include_directories(${std_msgs_INCLUDE_DIRS})
# Find Gazebo
find_package(gazebo REQUIRED)
include_directories(${GAZEBO_INCLUDE_DIRS})
link_directories(${GAZEBO_LIBRARY_DIRS})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${GAZEBO_CXX_FLAGS}")
# Build our plugin
add_library(velodyne_plugin SHARED velodyne_plugin.cc)
target_link_libraries(velodyne_plugin ${GAZEBO_LIBRARIES} ${roscpp_LIBRARIES})
# Build the stand-alone test program
add_executable(vel vel.cc)
if (${gazebo_VERSION_MAJOR} LESS 6)
include(FindBoost)
find_package(Boost ${MIN_BOOST_VERSION} REQUIRED system filesystem regex)
target_link_libraries(vel ${GAZEBO_LIBRARIES} ${Boost_LIBRARIES})
else()
target_link_libraries(vel ${GAZEBO_LIBRARIES})
endif()
确保您已获取ROS:
source /opt/ros/<DISTRO>/setup.bash
重新编译插件。
cd ~/velodyne_plugin/build
cmake ../
make
现在,我们可以照常加载Gazebo插件,它将在ROS主题上侦听传入的浮动消息。然后,这些消息将用于设置Velodyne的转速。
开始 roscore
source /opt/ros/<DISTRO>/setup.bash
roscore
在新的终端中,启动Gazebo
cd ~/velodyne_plugin/build
source /opt/ros/<DISTRO>/setup.bash
gazebo ../velodyne.world
在新的终端中,用于rostopic
发送速度信息。
source /opt/ros/<DISTRO>/setup.bash
rostopic pub /my_velodyne/vel_cmd std_msgs/Float32 1.0
更改以上命令的最后一个数字以设置不同的速度。
恭喜,您现在拥有构建自定义模型,共享模型并生成公共API的工具。玩得开心,模拟愉快!